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Abstract—Cloud storage services such as Dropbox have been
widely used for file collaboration among multiple users. However,
this desirable functionality is yet restricted to the “walled-
garden” of each service. At present, the only effective approach to
cross-cloud file collaboration seems to be using web APIs, whose
performance is known to be highly unstable and unpredictable.

Now that using inefficient web APIs is inevitable, in this
paper we attempt to achieve sound user-perceived performance
for cross-cloud file collaboration. This attempt is enabled by two
key observations from real-world measurements. First, for each
cloud, we are always able to deploy one or several nearby (client)
proxies which can efficiently access the web APIs. Second, during
file collaboration, significant similarity exists among different
versions of a file. This can be exploited to substantially reduce
inter-proxy traffic and thus shorten the data sync time.

Guided by the observations, we design and implement an open-
source prototype system called CoCloud. Currently, it supports
file collaboration among four popular cloud storage services in
the US and China. Its performance is well acceptable to users
under representative workloads, even approaching or exceeding
intra-cloud performance in many cases.

I. INTRODUCTION

Personal cloud storage services, such as Dropbox, Google
Drive, Microsoft OneDrive, and Baidu PCS [1], have quickly
gained tremendous popularity in recent years, for they pro-
vide convenient data backup and automatic cross-device/user
synchronization (sync). They are seen as a great advance
over, or a useful complement to, traditional network file
services via NFS, HTTP/FTP, or P2P protocols. More recently,
they have been widely used for more advanced, user-desired
functionalities, in particular multi-user file collaboration such
as collaborative document editing and team coding.

However, this desirable functionality is yet restricted to the
“walled-garden” of each cloud storage service, i.e., file collab-
oration happens inside either Dropbox or OneDrive, but not
both. Meanwhile, users’ preferences for clouds are different for
a number of technical and non-technical reasons. In addition to
personal habits, clouds show great spatial/temporal variations
in performance [2], and some are even unavailable in certain
regions (e.g., Dropbox and Google Drive have been banned in
China). The unsatisfactory status quo urges us to enable file
collaboration across heterogeneous clouds.

Imagine Alice, a user of Dropbox in Los Angeles, and Bob,
a user of Baidu PCS in Beijing, intend to collaboratively edit a
paper. An intuitive approach goes as follows. Whenever Alice
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Fig. 1. Architectural overview of cross-cloud file collaboration with CoCloud.

finishes a version of the paper, she generates for Bob a URL to
the version in Dropbox. Then, Bob downloads the version from
the Dropbox URL by issuing an HTTP GET request. Likewise,
Bob also returns to Alice the URL to his latest version in Baidu
PCS after editing. Obviously, such a manual sharing approach
is not only inconvenient but also inefficient, and is thus hardly
adopted in the presence of frequent file edits.

An alternative approach, also the only seemingly effective
approach at present, is to leverage the public web APIs pro-
vided by these cloud storage services, typically in a RESTful
style for data access at full-file level. In the above example,
Alice and Bob can avoid manual URL generation and sharing
by invoking the web APIs of Dropbox and Baidu PCS, with the
help of tools like IFTTT [3]. Unfortunately, the performance
of the web APIs offered by popular cloud storage services
is known to be highly unstable and unpredictable [2], let
alone the lack of advanced data sync techniques such as
delta compression, data deduplication, and small-file bundling
(which are often supported by their PC clients and mobile
apps) [4].

Now that using inefficient web APIs is inevitable, in this
paper we attempt to achieve sound user-perceived performance
for cross-cloud file collaboration, even under the workload
of frequent file edits. This attempt is enabled by two key
observations from our real-world measurements. First, for each
popular cloud storage service, we are always able to deploy
one or several nearby (client) proxies which can efficiently
access the web APIs. Second, during file collaboration, signif-
icant similarity exists among different versions of a file. This
can be exploited to substantially reduce inter-proxy traffic and
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Fig. 2. Upload/download latency of a 10-MB file to/from Dropbox(D),
OneDrive(O) and Google Drive(G) by four AWS nodes.
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Fig. 3. Average upload/download latency of two typical file workloads
by Dropbox web API and native client.

thus shorten the data sync time.
Guided by the observations, we design and implement a

prototype system called CoCloud. As demonstrated in Fig. 1,
a series of proxies (i.e., rented virtual machines) are de-
ployed close to the clouds involved, and a unified inter-
proxy advanced transfer protocol is devised to take advantage
of advanced data sync techniques (including deduplication,
compression, bundling, and so forth). Besides, we also de-
sign relevant control mechanisms to guarantee timeliness and
eliminate redundant updates during file collaborations.

Currently, CoCloud supports file collaborations among
four popular cloud storage services in the US and
China, namely Dropbox, Google Drive, Microsoft OneDrive,
and Baidu PCS. Its source code is publicly available
at https://github.com/CoCloud/cocloud-demo. Comprehensive
real-world evaluation results confirm the efficacy and effi-
ciency of CoCloud. In general, its performance is well ac-
ceptable to users under representative workloads. For example,
an end-to-end file collaboration takes an average of about 30
seconds, approaching the performance of intra-Dropbox file
collaboration. Sometimes, synchronizing a batch of small files
from Dropbox to OneDrive takes less than 20 seconds, even
exceeding the performance of intra-OneDrive file collabora-
tion.

In summary, this paper makes the following contributions:
• From a number of real-world measurements, two key

observations are drawn to overcome the inefficiency of
cloud-storage web APIs (§ II).

• Based on the observations, we design CoCloud, an effi-
cient cross-cloud file collaboration system that integrates
a group of enabling solutions, including a cloud proxy de-
ployment scheme, an inter-proxy advanced transfer pro-
tocol, and file collaboration control mechanisms (§ III).

• We implement an open-source CoCloud prototype, and
extensive real-world evaluations demonstrate its well
acceptable performance for cross-cloud collaboration
(§ IV).

II. MOTIVATION

To synchronize data among devices in real time, most
personal clouds provide a client to interact with the cloud
server. Further, some clouds even support collaborative file

TABLE I
IFTTT INTER-CLOUD BACKUP COMPLETION TIME

Backup Service File Size and Type
30-KB Document 10.1-MB Installer

Dropbox to OneDrive 1min35s 8min42s
Dropbox to Google Drive 2min9s 9min54s

editing among partners. As a great advance compared to
the traditional static URL sharing and web access, the col-
laboration functionality attracts a multitude of non-computer
professionals due to its simplicity, even overwhelming the
widely used version control tools like Git and SVN.

Taking the well-known Dropbox as an example, a typical
collaboration protocol includes the interactions between client
and both data storage server and control server. By analyzing
SSL sockets hijacked with DynamoRIO [5], we find that
before and after a client stores or retrieves data to/from the data
storage server (the core file collaboration process), it needs to
commit metadata (e.g., hashes, file info) to the control server
to either prepare or conclude the process.

On this basis, a number of capabilities are adopted by Drop-
box client, optimizing both storage and transmission. These
include chunking (i.e., splitting data into certain size units for
recovery simplification), deduplication (i.e., transmitting only
modified parts for storage and network bandwidth savings),
bundling and data compression (i.e., batching multiple small
files or compressing large files for further traffic overhead
reduction). Widely adopting these capabilities brings great
gains to Dropbox’s collaboration service.

Nevertheless, users’ preferences for clouds are different
due to both personal habits and performance considerations.
Especially, as Dropbox is unavailable in some regions like
China, a large number of users resort to local cloud services
instead. These users may wonder how they can collaboratively
edit papers or source codes with their remote Dropbox part-
ners. Actually, data stored in all personal clouds are facing
the vendor locked-in dilemma: external access is restricted to
proprietary RESTful web APIs.

Based on these APIs, IFTTT [3] provides an intuitive inter-
cloud backup approach: utilizing a proxy to unidirectionally
forward files from one cloud to another. We test the per-
formance under some typical workloads, and the results are
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Fig. 4. System framework of CoCloud (including interaction among components and their internal module calls).

shown in Table I. Surprisingly, the completion time is overall
extremely long (e.g., merely a small document file may take
several minutes). They can hardly satisfy the timeliness re-
quirement of most file collaborations, nor do they provide file
consistency guarantee or functionalities like file deletion and
folder creation. As invoking web APIs is inevitable for external
file access, we next try to deeply understand their inefficiency
and possible improvements by further measurements.

Firstly, from four geo-distributed Amazon AWS nodes, we
separately measured the latency of uploading to / download-
ing from a 10-MB file to four personal clouds (Dropbox,
OneDrive, Google Drive, and Baidu PCS) for 50 times over a
week. Fig. 2 illustrates the average, maximum and minimum
latency with three clouds (Baidu PCS is not included because
of extremely high latency). On the whole, cloud performance
shows both spatial and temporal variations, in line with the
measurements in [2]. It is worth mentioning that some nodes
greatly outperform others on the latency to a certain cloud,
and most of them only show temporal fluctuation within a
narrow range (e.g., California node for Dropbox download).
By further constrasting with other virtual machine providers
(e.g., DigitalOcean [6]) and analyzing traceroute routing paths,
we can conclude that for each popular cloud, one or several
proxies can be deployed nearby to efficiently access the web
APIs.

In addition, as the web APIs do not provide capabilities
that are adopted in their native client counterparts, next we
present the performance comparison between them to quanti-
tize APIs’ inefficiency. Measurements of Dropbox’s upload
and download are conducted on an Aliyun ECS Windows
server in Silicon Valley. Fig. 3 describes the results (in log
scale) of two typical cases: modifying a small fraction of a
large file (100 MB) and transmitting a batch of small files
(100 × 10 KB). A remarkable latency gap is observed between
the two approaches. Meanwhile, a large real-world data trace
of cloud synchronization [4] indicates that 52% files can be
effectively compressed and 18% can be deduplicated, and the
optimal deduplication and compression settings tend to be
similar among different versions of a given file. Therefore,

we should adopt the capabilities found in native clients, and
further exploit the similar traits among different versions of a
file to substantially reduce data traffic and thus sync time.

III. COCLOUD DESIGN

Guided by the above two key observations from real-
world measurements, we design CoCloud to achieve sound
user-perceived performance for cross-cloud file collaboration.
The framework of CoCloud system along with the proxy
deployment methodology is first described. Next, we specifi-
cally present inter-proxy advanced transfer protocol for inter-
proxy transfer optimization and also file collaboration control
mechanisms to guarantee timeliness and eliminate redundant
updates.

A. System Framework

CoCloud fulfills the whole file collaboration based on
the interaction among components CoCloud Client, Control
Server, and Cloud Proxy. The detailed system framework is
shown in Fig. 4, and functionalities of each component are
outlined as follows.

CoCloud Client: The client program on users’ terminals
is lightweight, and it follows a subscription/push mode. A
user is authorized by Subscription Authorizer based on OAuth
2.0 framework [7] when he subscribes to CoCloud. The token
returned is stored along with the collaborator list in the control
server. After the initial setup, File Update Monitor captures
changes in the sync folder of cloud’s native client, and it
automatically synchronizes the updated files to other clouds.

Control Server: As a central controller, it handles update
notifications by selecting proxies to transfer the corresponding
files. The work is mainly done by Notification Handler.
In addition, Metadata Manager is in charge of maintaining
metadata like user tokens and collaborator list as well as file
version consistency.

Cloud Proxy: Cloud Interface on each cloud proxy interacts
with the corresponding cloud by APIs. Measurement Agent
periodically measures link bandwidth, and proper proxies for
each cloud are timely fed back to the control server based on
their available bandwidths. On this basis, Protocol Handler is
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repsonsible for transferring the notified file updates, where the
data transfer optimization between peer proxies is achieved by
an advanced transfer protocol.

B. Cloud Proxy Deployment Scheme

According to our first key observation, one or several
proxies are deployed nearby each cloud for efficient data
access, and thus a proxy-per-cloud network architecture is built
(Fig. 1). Specifically, for a personal cloud with centralized
servers (centralized cloud, e.g., Dropbox), which mainly shows
spatial performance variation, CoCloud deploys two proxies
with stably low upload and download transfer latency as the
source and destination proxies respectively. For a personal
cloud adopting multiple edge nodes (multi-node cloud, e.g.,
Google Drive), whose best performance is achieved from
different nodes temporally, CoCloud selects proxies for this
kind of cloud according to the following approach.

Initially, we resolve the cloud’s domain name from many
DNSs to obtain a complete list of its edge nodes (their
locations can be analyzed by the approach in [8]). Then a
test file of size STF is uploaded to and downloaded from
these nodes and transferred among a number of geo-distributed
CoCloud proxies, in order to measure the latency Tl of every
link. The overall bandwidth BWl of link l can be estimated
by STF /Tl.

To address the issue of temporal variation, the latency
measurements are done periodically, and the values are then
fed back to the control server in groups. Accordingly, some
proxies with top download and upload bandwidth (lowest
latency) to the nearest cloud node are picked out as source
and destination proxies for each multi-node cloud. In practice,
we select the proxies with latency less than +10% the lowest
value.

C. Inter-proxy Advanced Transfer Protocol

File creation and modification account for a remarkable
proportion of file operations according to the real-world sync
trace [4]. To boost the overall collaboration efficiency, cross-
cloud data transfer should be well designed. Fortunately, on
the basis of the aforementioned proxy-per-cloud architecture,
we can focus on data transfer optimization between peer
proxies. According to our second key observation, we ex-
ploit the similarity among file versions and propose inter-
proxy advanced transfer protocol that integrates advanced data
sync techniques, including adaptively-chunked deduplication,
wisely-adjusted compression, and multi-level bundling.

Adaptively-chunked Deduplication. For a large proportion
of files in collaboration, there is only slight modification from
one version to the next. Therefore, the transfer performance
can be greatly improved for large files, if only the modified
parts are transferred. In view of this, deduplication techniques
of both fixed-chunk and rolling-chunk like Rsync algorithm
[9] were adopted by previous file transfer systems [10], [11],
[12]. Though Rsync overcomes the ineffectiveness of fixed-
chunk deduplication, which occurs when inserting bytes into

a file [13], the pre-designated rolling chunk (window) size may
not prove to be the best choice.

A typical process of Rsync algorithm can be described as
follows: each cloud proxy maintains the metadata of files on
the corresponding cloud. When a file is to be transferred, the
source and the destination compare its metadata to decide
if it is updated. Once successfully confirmed, the destination
will send back the hash values of chunks in the old version
with designated chunk size c. Thereafter, the source checks
every continuous c bytes in the updated file (shifting byte by
byte) based on rolling hash values (4 bytes each), and further
confirms the duplicated parts by comparing MD5 hash values
(16 bytes each). Only the non-duplicated parts, along with
the references of duplicated chunks (2 bytes each), are finally
transferred to the destination. The destination then rebuilds the
new version with such information and chunks from the old
version. Finally, the metadata is updated according to the new
version while the updated file is uploaded to the cloud storage
server.

We define deduplication ratio γ = size of eliminated parts
/ original file size. Then for a file of size f , the sizes of
transferred data and the corresponding metadata are (1−γ)∗f
and df/ce ∗ (4 + 16) + γ ∗ (f/c) ∗ 2, respectively. Note
that the metadata size can be omitted here for the marginal
overhead compared with the transferred data. Through the
above analysis, we find that the deduplication ratio highly
affects the actual traffic and transfer time, and it is determined
by both the content (size, type, and modification scale) and
rolling chunk size c.

For example, partners may revise different small files inside
a tar file of Linux source code. Smaller chunk size for
Rsync tends to bring higher deduplication ratio. In contrast,
sometimes users may also operate on local databases and sync
the backup files to their partners, for which larger chunk size
can lead to lower overall overhead, as data tend to be appended
to the end in most cases. As a consequence, a common chunk
size suitable for all files can be hardly set.

Now that it is impossible to obtain γ for a file unless it
is actually transferred, we try to predict the best value based
on our previous observation that the optimal chunk size is
highly consistent among file versions. A specific process is:
We pick a small collection of typical chunk sizes in advance,
from hundreds of bytes to tens of kilobytes. When the file is
updated for the first time, the rolling chunk size is chosen by
the default setting of Rsync algorithm.

Thereafter, every time the destination cloud proxy receives
an updated version, it runs the rolling-chunked deduplication
locally with each chunk size ci in the collection to get the
deduplication ratio γi for this file. Note that the process
do not have real time requirement, so it can be conducted
whenever there is enough CPU resource, e.g., in parallel
with file uploading to destination cloud. Here we define the
normalized deduplication ratios as the chunk size selection
probability vector,

~ptest = γi/
∑
i

γi (1)
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Then the correlation between currently recorded selection
probabilities ~pcur and predicted selection probabilities ~pnext
is

~pnext = ~pcur ∗ α+ ~ptest ∗ (1− α), (2)

where α is a decay factor and is typically set as n/(n+1) for
the n-th adjustment. The chunk size corresponding to the high-
est probability in ~pnext will be adopted by the deduplication
process next time.

Wisely-adjusted Compression. Data compression is deemed
as a file transfer optimization technique for non-duplicate data
as well as data after deduplication. However, an effective
compression algorithm is somehow difficult to select, as any
given compression algorithm like gzip, bzip2, or zlib achieves
different compression levels for various files. We define com-
pression ratio β = file size before compression / file size after
compression. Similar to deduplication, the compression ratio
is determined by both compression algorithm and specific file
structure.

Generally for a given file, high compression ratio generally
concurs with long compression time. As the optimal compres-
sion setting (algorithm and level parameter) among versions
of a file also tends to be consistent, we similarly predict
the compression rate of each algorithm from history, and ~β
denotes the recorded compression ratio list for a specific file.

Consider a complicated scenario where deduplication and
compression are both enabled. We decide the scheme by
comparing the computation rate and transfer rate. The transfer
rate rt, hash computation rate ra, and compression rate rb can
be inferred from the current network bandwidth and the recent
computation. They are converted into relative rates with the
aid of deduplication ratio γ and compression ratio β,

(r′a, r
′
b, r
′
t) = (

1− γ
β

ra,
rb
β
, rt) (3)

Then the overall computation rate (data generation rate) of
CPU can be represented by

rc =
1

1/r′a + 1/r′b
=

(1− γ)rarb
β(1− γ)ra + βrb

(4)

In (4), the best deduplication ratio γ is adopted. Then each βi
in compression ratio list ~β is evaluated. If ∀βi, rc < rt, the
calculation part is deemed as the bottleneck and thus compres-
sion will be disabled. Otherwise, we select the maximum βi
that satisfies rci ≥ rt for compression.

Multi-level Bundling. To further boost transfer efficiency and
reduce overhead, bundling mechanisms in multiple levels can
be supplemented to the protocol. First, a persistent network
connection is set up between peer cloud proxies to reuse
for all the buffered files, instead of one connection per file.
Moreover, large files are divided into a number of transfer
blocks for data recovery consideration, whose size S̄b can be
typically set as 4MB based on network throughput as well as
transmission failure rate [14]. Asynchronous application-layer
acknowledgements are adopted instead of stop-and-wait ACK
mode, as transfer blocks are not directly related to each other.

Only unacknowledged blocks need to be retransmitted when
network interruption or congestion occurs.

Finally, batching files smaller than the block size is designed
as a fine-grained bundling mechanism. A bundle block is built
with as many cached small files as possible. The hash values
of the files are calculated, and then the contents of every file
along with the corresponding hash and size are encapsulated
into the bundle block. Moreover, a tag byte that indicates the
special block is added at the head. The aggregate file size,
along with the corresponding hash and file size set as well
as the tag byte, should be less than S̄b. When the destination
receives the bundle block, it retrieves the files based on size
segments and check their hashes to confirm the transfer data.
Compression will be further conducted on the bundle block,
if the files all belong to types with high compression ratio.

We conclude the whole inter-proxy advanced transfer pro-
tocol as the following steps:

Step 0: The source cloud proxy is notified of the updated
files, and it downloads them to its buffer.
Step 1: The source batches metadata of all buffered files
and send it to the destination proxy to compare the file
version.
Step 2: For files to update, different schemes are adopted,
depending on the relation between file size Sf and
transfer block size S̄b:

– if Sf ≥ S̄b and it is an updated file, then do rolling-
chunked deduplication and compression, and form
transfer blocks;

– if Sf ≥ S̄b and it is a new file, then do compression
and form transfer blocks;

– if Sf < S̄b, then bundle several files into a special
block, and do compression.

Step 3: All the transfer blocks for the buffered files are
transferred in a network connection, and async ACKs for
the successful ones are returned from the destination.
Step 4: The destination handles the data correspondingly
(decompression, rebuilding files with chunks, or de-
bundling).
Step 5: Received files are uploaded to the destination
storage server, and the best deduplication and compres-
sion parameters are predicted for future use when CPU
is idle.

D. File Collaboration Control Mechanisms

To further boost the collaboration efficiency, we next design
file collaboration control mechanisms adopted in both the
client and the control server. Fig. 5 depicts the complete
collaboration control process.

We first consider control optimization in CoCloud clients.
The collaboration directory is monitored by the local file
system interface and file updates are notified to the control
server in batch periodically. This avoids the considerable
overhead of frequent notification with update inquiry poll or
cloud callback mechanism [15]. More importantly, since file
update operations are cached in File Update Queue during
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the interval, some redundant or unnecessary updates can
be eliminated locally (e.g., a file modification operation is
removed once a deletion or another modification operation
to the same file occurs subsequently). This local redundant
update elimination mechanism can reduce the real update
workloads to some extent.

When file update notifications arrive at the control server,
they are added to a priority-based message queue named No-
tification Queue. Each notification includes update operation,
arrival timestamp, and corresponding file metadata. These
update notifications are then classified by source cloud (or
destination cloud for folder creation and file deletion) and
added into different Cloud Caching Queues. For a given cloud,
proxies with top download/upload bandwidth (based on the
periodical measurements in III-B) are used to serve operations
to this cloud. The handling thread of every Cloud Queue
notifies the corresponding Cloud Proxy of the file updates in
sequence. Then file update status is fed back to the control
server in real time.

IV. PERFORMANCE EVALUATION

In this section, we first present the implementation of Co-
Cloud prototype in details. On the basis of proxy deployment,
we widely conduct measurements on the effectiveness of Co-
Cloud, in different scenarios with a variety of typical realworld
workloads. Finally, we study the end-to-end collaboration
efficiency among the popular cloud services.

A. CoCloud Prototype

We have implemented a prototype of CoCloud framework in
approximately 5000 lines of both Java codes for cloud proxy
and control server and C# codes for a lightweight Windows
client. The prototype can provide efficient file collabora-
tion service among users of four personal clouds: Dropbox,
OneDrive, Google Drive, and Baidu PCS. The source code is
available at https://github.com/CoCloud/cocloud-demo.

Particularly, the Protocol Handler module plays a key role
in efficient sync. We implement the Rsync algorithm ourselves
without calling libs, conveniently adding the mechanisms for
optimization while avoiding the extra overhead when invoking
a lib. To reduce storage overhead, the cached files are recycled
periodically in idle time following LRU (Least Recently Used)

scheme. In addition, the bandwidth measurement and feedback
as well as the file update notification between a cloud proxy
and the control server all rely on Apache MINA framework
[16].

The Cloud Interface module supports four widely applied
clouds currently, and new clouds can be easily added. When
a number of files or transfer requests arrive simultaneously,
CoCloud will start multiple threads to accelerate API upload or
download corresponding to the designed control mechanisms.
Besides, we implement CoCloud client on Windows platform,
leveraging each cloud’s OAuth interface for user authorization
and FileSystemWatcher for file update monitoring.

B. Experiment Setup

Based on our first key observation, we deploy cloud prox-
ies in a number of geo-distributed AWS EC2 nodes (North
Virginia, California, and so forth) and an Aliyun ECS node
(in Beijing). The proxies corresponding to each cloud service
are selected according to the periodical latency measurement
in III-B. By this means, the sufficient throughput is guaran-
teed between cloud proxies and corresponding cloud storage
servers.

Additionally, we take an Aliyun Silicon Valley ECS node
as the control server, which can interact with all proxies with
little latency. California EC2 node is also used to simulate
IFTTT forwarding proxy for performance comparison, because
it performs overall best among clouds for API access.

C. Efficiency of CoCloud Data Transfer

We first evaluate the protocol performance on small files
(i.e. Sf < S̄b), which is the most common scenario in collab-
oration. Typically, we conduct the evaluation by transferring a
large batch of small files (100×10KB), and measure the inter-
cloud transfer time between three pairs of cloud (Dropbox-
Baidu PCS, OneDrive-Baidu PCS, and Dropbox-OneDrive) in
both directions, as shown in Fig. 6.

Servers in Beijing, California, and Virginia work as cloud
proxies of Baidu PCS, Dropbox, and OneDrive respectively,
since they are either along with or close to the corresponding
cloud storage server. To avoid the influence of deduplication
and compression, we randomly generate the contents of the
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Fig. 6. Cross-cloud transfer time of a batch of small files among Drop-
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Fig. 7. Cross-cloud transfer time of FFmpeg source codes among Drop(box),
Baidu, and One(Drive).

files. We also evaluate the transfer time of IFTTT-like for-
warding approach (i.e., a single server downloads files from
a cloud and then uploads them to another cloud with only
RESTful APIs) for contrast. Although performance disparities
are found among different cloud peers due to network condi-
tions, CoCloud always outperforms the intuitive scheme, with
transfer time speedups up to 2.35× and 1.56× on average. The
comparison confirms the effectiveness of multi-level bundling
mechanism designed in the transfer protocol.

Besides small files like documents, partners also often
collaborate on some relatively large files such as source codes,
and even videos. Thus we also conduct the performance
evaluation on large files, with FFmpeg 1 source codes [17]
(about 50-60MB) as a sample. We collect 10 versions of
codes (updated every 2 months) and transfer them between
peer clouds sequentially according to the version number.
Fig. 7 describes the transfer time between Dropbox and Baidu
PCS, as well as between Dropbox and OneDrive. The IFTTT-
like forwarding approach serves as a comparison. Similar to
the transfer of small files, the improved deduplication and
compression mechanisms in the transfer protocol can reduce
the transfer time up to 73.1% and 61.8% on average in contrast
to the forwarding approach.

We further evaluate the effectiveness of the adaptive selec-
tion mechanisms in the transfer protocol. For adaptively chun-
ked deduplication, we conduct measurement on the network
traffic incurred among the 10 different source code versions.
Note that the time of deduplication varies little with different
chunk size, so the network traffic is positively related to overall
latency. The metric Transfer Traffic Ratio (TTR) is defined as
the ratio of the traffic of a chunk size to the theoretically
optimal one.

Fig. 8 shows the transferred data ratio of CoCloud in
comparison with that of several typical chunk sizes, along with
the theoretically optimal curve with TTR = 1. We can observe
from the figure that the transfer traffic of CoCloud converges to
the optimal curve very fast, outperforming all the fixed chunk
sizes. According to our measurement, the real transfer traffic
of CoCloud also keeps steady among different versions, which

1FFmpeg is an open-source program to record and convert audio and video.

proves that the adjustment mechanism promotes the efficiency
as well as robustness of inter-cloud data transfer.

In addition, we evaluate the wisely-adjusted compression
mechanism by measuring and comparing the transfer and com-
putation rates. For all the experimental proxies, compression
is not the bottleneck and thus the algorithm with the highest
compression ratio can be always adopted for compression.
In reality, by overall considering network and computation
overhead, the computation time for deduplication, compres-
sion and adjustment in CoCloud all occupy relatively small
proportion compared with the whole transfer time, and in most
time, computation is conducted in parallel with data transfer
operations, well utilizing the relatively idle CPU resource.
Therefore, the advanced transfer protocol adopted brings little
overhead in practice.

For clouds adopting multiple edge nodes for API access,
CoCloud provides multiple proxies for selection. We next
take the representative multi-node cloud Google Drive as an
example to evaluate the performance that multiple proxies
work concurrently. Specifically, two AWS servers (California
and Virginia) are selected as Google Drive proxies based on
the latency measurement. Here we transfer the aforementioned
FFmpeg source code files from Google Drive to the other
three clouds, and dispatch the transfer workloads to the proxies
according to their respective measured latencies.

Fig. 9 illustrates the overall transfer time of CoCloud policy,
in comparison with adopting only one proxy (California node)
for Google Drive (“Baseline” in the figure). While Baidu
PCS proxy assembles workloads from both Google Drive
proxies, Dropbox and OneDrive proxies each overlaps one
Google Drive proxy. Among them, the transfer performance to
Baidu PCS experiences the most obvious promotion (27.9%
reduction in overall time), which well shows that concurrently
utilizing multiple proxies can achieve efficiency promotion for
multi-node clouds.

D. End-to-end Collaboration Performance

We finally consider the performance of multi-user end-to-
end file collaboration. To achieve this goal, we simulate the
scenario that users of different cloud services use CoCloud
for file collaboration simultaneously. It is manifest that the
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version at a time).
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Fig. 9. Transfer time reduction with multiple proxies for multi-node cloud
Google Drive.

end-to-end data sync time is highly influenced by the upload
and download latency of its native client. As users in China
are blocked from accessing Dropbox and Google Drive, and
Baidu client sync is much slower than the other three, here we
only show CoCloud performance among US users of Dropbox,
OneDrive, and Google Drive.

Fig. 10 and Fig. 11 give their end-to-end collaboration time
of two typical workloads (10-MB Zip file and a batch of
document files around 10 KB each), in comparison with the
performance of the native collaboration functionality (labelled
by “Native client” bar). The figures indicate that an end-to-end
CoCloud file collaboration for the above two typical workloads
takes about 30 seconds on average, almost achieving the
same level of efficiency as intra-cloud collaboration (only
1.42× and 1.88× collaboration time on average). Particularly,
synchronizing 50× 10-KB files from Dropbox to OneDrive
takes less than 20 seconds, even outperforming the intra-
OneDrive collaboration performance.

V. RELATED WORK

There has been a quantity of work on the increasingly
popular cloud storage service, which our work is mainly
related to in the following three aspects.

Multiple cloud management: Some previous studies have
proposed controlling multiple cloud services for redundant
data backup. DepSky [18] builds a dependable cloud-of-
clouds by distributing coded data into different public clouds,
while MetaSync [19] and UniDrive [14] serve personal cloud
users by adding more performance consideration and CYRUS
[20] further considers privacy and reliability issues. However,
these personal data backup managers require binding multiple
clouds simultaneously as their backend and locally dividing
every file into redundant chunks. In contrast, CoCloud is
an efficient Dropbox-like end-to-end full-file collaboration
service among heterogeneous personal clouds.

Cloud storage capabilities: There have been quite a few
relevant mature techniques these years, like Content Defined
Chunking (CDC) [21], [12], [11], delta encoding, and dedu-
plication [9], [22]. While these techniques are implemented
in the native clients of some personal cloud services, the
APIs provided for third-parties support none. According to our

proxy deployment approach, CoCloud proxies are located near
enough to API servers to overcome their inefficacy. Access to
these proxies is very efficient in virtue of inter-proxy advanced
transfer protocol, as if the cloud had provided the capabilities
to third parties.

Cloud measurement studies: A variety of previous re-
search papers measure and benchmark performance of multi-
ple clouds, from public clouds [23] to personal cloud services
[8], [4]. In addition, [24] presents the architecture of mobile
cloud storage services and their internal sync protocols, and
QuickSync [13] further addresses the synchronization inef-
ficiency problem of modern mobile cloud storage services.
Some other papers elaborately study the well-performed Drop-
box, by either pinning the inside architecture [10] or improving
the inefficiency of some client capabilities [25]. Likewise, the
internal structure of UbuntuOne is deeply studied by measure-
ment in [26]. However, these measurements are all conducted
on the cloud native clients. Besides, several papers have
studied personal cloud web APIs, like [2], [27]. In contrast
with them, we further make performance comparison between
web API and native client, and more importantly, observe
that proxies can be deployed nearby clouds to overcome API
inefficacy.

VI. CONCLUSION

In this paper, we address the cross-cloud file collaboration
problem, attempting to achieve sound user-perceived perfor-
mance based on the inefficient cloud web APIs. We first reveal
by measurements that one or several proxies can be deployed
nearby each cloud to overcome the web API inefficiency. On
this basis, we propose CoCloud for file collaboration among
heterogeneous clouds. It has a unified inter-proxy advanced
transfer protocol and a collaboration control scheme. We
implement an open-source CoCloud prototype to provide file
collaboration service among four popular personal clouds.
Extensive evaluations demonstrate that the system can well
guarantee low cross-cloud transfer latency. Its performance
even exceeds the intra-cloud collaboration performance in
some cases.

We believe the CoCloud solution can be easily adopted
as an efficient middleware among future clouds which has
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Fig. 10. End-to-end collaboration time of a 10-MB Zip file among three
popular cloud services.
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Fig. 11. End-to-end collaboration time of 50 documents (around 10 KB
each) among three popular cloud services.

collaborative functionality and high client performance. In ad-
dition, as security and privacy protection becomes increasingly
significant for cloud data services [28], security and privacy
issues will be also considered for CoCloud system in our future
work.
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